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Two-Dimensional Lattice Tree Exponents and 
Amplitudes: Simulation Algorithms Versus Series 
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We use a local Monte Carlo algorithm to simulate lattice trees in two dimen- 
sions for the site and bond problem. We investigate the properties of radius of 
gyration, perimeter-to-site ratio, and vertex degree in a tree, adding some new 
results in the site problem, compare our results on their noncritical properties 
with those obtained from earlier reversible and slightly nonreversible algo- 
rithms, and combine our determinations with new exact series expansion data. 
On the controversy surrounding the possible lack of universality for the first 
confluent singularity for the gyration radius, we feel that conclusions must be 
guarded. 

KEY WORDS: Lattice trees; Monte Carlo radius; perimeter; corrections to 
scaling. 

1. INTRODUCTION 

T h e  k n o w l e d g e  of  the charac te r i s t i c  pa r ame te r s  of  lat t ice trees and  their  
cri t ical  p roper t i es  has  been a specific po in t  of  interest ,  since it has topo log i -  

cal s imilar i t ies  wi th  b ranch  po lymer s  in d i lu te  so lu t ion  (i.e., the  vert ices act  

as m o n o m e r s  and  the edges as chemica l  connec t ions ) .  O n  the o the r  hand,  

there  is c lear  ev idence  in f avor  of  the fact tha t  la t t ice  trees share  the  s a m e  

universa l i ty  class as the lat t ice an imals ,  as d e m o n s t r a t e d  by several  
au thors .~m 15,6) 

In  any  m i c r o c a n o n i c a l  ensemble  s imu la t i on  of  a lat t ice tree by the 

M o n t e  C a r l o  me thod ,  the m e a n  rad ius  of  gy ra t i on  for a fixed n u m b e r  of  s 

i Department of Pure and Applied Physics, University of Salford, Salford M5 4WT, England. 
2 Permanent address: Departamento de Fisica, Universidade de Trfis-os-Montes e Alto 

Douro, 5000 Vila Real Codex, Portugal. 

909 

0022-4715/94/0200-0909507.00/0 �9 1994 Plenum Publishing Corporation 



91 0 Gon~alves 

sites is the key which expresses common critical parameters with the other 
systems and is defined for large s as 

Rg -- A's"(l + B's -'J~ + ...) (1) 

where v is the leading exponent, and z/t is the correction-to-scaling 
exponent, while A' and B' are the specific amplitudes. 

Several methods were used to determine v, and the convergence is 
toward 0.641, indicated by Derrida and DeSeze ~2) and Kertrsz, Itl~ in 
contradiction to the mean-field value given by the Fiory approximation 
of 5/8 = 0.625. 

The value of A~ has not been limited to a narrow band, and remains 
a bone of contention. From the first value presented by Gut tmann and 
Gaunt t81 of A ~ ~ 1 and the evidence bond site of A ~. > A~ , other values presented 
by several authors (for lattice animals t7'~3'~1 and for lattice trees tgl) are 
between 0.635 and 0.87. 

In the present work we calculate by a local Monte Carlo algorithm for 
the bond and site problem in two dimensions all the parameters in the 
Rg relation (1) for large n, especially the value of At, to see from this 
algorithm the extent to which we can get at more solid value. 

Besides the mean value of the radius of gyration, we calculated the 
mean ratio of number of perimeter sites to the number s of occupied sites 
( K =  ( t / s ) )  (designating the perimeter-to-site ratio, where perimeter is 
defined in the percolation sense), strongly believed to follow the law 

K - ~ a + b s  - l  (2) 

and the vertex degree in a tree, which is the fraction of sites s with v bonds 
connected to it t~5"t~ 

lim (v~)=~,  1 <~i<~z (3) 

In Section 2 we describe the algorithm, which uses the permanent data 
structure akin to that used by Duarte t3~ and Duarte and Cadilhe, ~5~ since 
we need the perimeter information to calculate K. Finally, in Sections 3 and 
4 we present the results and conclusions. 

2. M O N T E  CARLO A L G O R I T H M  

The lattice tree is basically an unrestricted branched self-avoiding 
walk. The simulation procedure we adopted is a local Monte Carlo algo- 
rithm and can be identified as the "leaf mover" algorithm used by Seitz and 
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Klein c'5~ and Janse van Rensburg and MadrasJ 1~ The whole process 
consists in the replacement of an extreme site (site with valence equal to 
one) from its position to a new one. Although, both simulations--site and 
bond prob lem--make  the same movement, the steps to do so differ from 
one another. In the site problem, we generate a new tree as follows: 

1. Randomly pick one of the s sites of a tree. 
2. If it is not an extreme site, we leave the site in its place and return 

to step I. Otherwise, we remove the site. 

3. Randomly choose one of the s -  1 remaining sites, and randomly 
choose one of the z bonds emanating from it. 

4. If the other site at the end of that bond is occupied, we return to 
step 1. Otherwise, we check if it creates a cycle. 

5. If a cycle would be created, it is a failure, and we return to step 1. 
If not, we have a successful transition and we update the old tree 
before going to step 1 for the next attempt. 

This procedure is different from the bond problem in the choice of the 
removing site and in the absence of cycle checking. If in the site problem 
it was enough to pick an extreme, in the bond problem it is also necessary 
to pick, with a probability of 1/z, the direction to which it is connected. 
Once we check the state of the site after choosing a bond, the existence of 
a cycle is totally forbidden. 

The algorithm description is reversible, since the probability to move 
an extreme site and reverse the process is the same: 

1 1 1 
for the site problem (4) 

s s - - l z  

and 

1 1 1 

s s - l z  2 
for the bond problem (5) 

In either problem and for each run of fixed site, we performed a total of 10 7 

iterations. For every thousand iterations, namely N, we took an average, 
thus obtaining a data point. Hence our results are averages over 10,000 
data points. For this total number of iterations, the program structure 
proved to be efficient; the largest run time, which corresponds to the site 
problem with s = 1900, took a total time of 15.2 hr of computer time on a 
DEC5000 server (with RISC technology). At each value of s the initial tree 
was randomly generated. For  values of s/> 500, we performed ten runs to 
stabilize the variables. 
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3. RESULTS 

3.1. The Mean Radius of Gyration 

The mean radius of gyration is represented in Table I and plotted on 
a log-log plot in Fig. 1. We used a power law for this value of the form 

R~ = A's" (6) 

The results are for the leading exponent v (s i te )=0 .639_0 .020  and 
v(bond) = 0.622__+ 0.020 with the amplitudes A'(site) = 0.449 + 0.20 and 
A'(bond) = 0.389 + 0.020 and our error bars are only statistical. Apart from 
the fact that the value for the site problem is in good agreement with the 
value of 0.64, a closer look at the graph shows in this case that the s = 10 
and s = 1900 values are out of the main direction and for the bond problem 
the values greater than s = 700 force a value of v lower than what might be 
expected. The analysis without the referenced values indicates for the 
leading exponents v(site) = 0.636 _ 0.010 and v(bond) = 0.637 _ 0.I0, and 
for the correspondent amplitudes A'(site)= 0.469 ___ 0.013 and A'(bonds)= 
0.360 + 0.020. Both values of v are in agreement with the results from the 
finite-size scaling renormalization value for the site animals problem of 
v = 0.6408. t2.'l~ 
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Fig. 1. Log-tog plot of Rg versus n for the site ( + ) and bond ( x ) problem, and for the site 
( 0 )  problem of Duarte, (3) 
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Table  I. M e a n  Radius o f  Gyra t ion  a 

n R e (bond) R e (site) 

10 1.5950(2) 1.8365(2) 
15 2.0627(5) 2.6338(5) 
24 2.768(1) 3.441(1) 
40 3.811(3) 4.748(3) 
60 4.999(5) 6.236(6) 
84 6.142(7) 7.697(8) 

120 7.64(1) 9.67(1) 
190 10.19(1) 12.84(1) 
300 13.49(2) 17.32(2) 
500 18.82(2) 23.96(3) 
700 23.63(3) 30.00(4) 

1000 28.51(3) 37.69(5) 
1200 31.91(4) 41.73(5) 
1500 37.77(5) 48.15(6) 
1900 42.09(5) 53.42(5) 

Error bars are standard deviations. 

Defining v=0.6408, we tried to obtain the correction-to-scaling 
exponent A l, dividing Rg by s', and fitted the values to the law 

R----~g= A' + Cs-a '  (7) 
S v 

A plot of R g / s "  versus  s is very irregular and any fitting to the Eq. (6) 
extremely disappointing, even when restricted to lower sizes, where the 
correction term in Eq. (7) could be expected to slow up. 

We tried to obtain zl~ by reanalyzing the series of Rg presented by 
Ishinabe c9) with the finite-size scaling renormalization method (t4) to A' 
and A, with v = 0.6408, and through an unbiased Pad6 method used by 
Adler et al. (~) to v and zt,. 

For the bond problem, Fig. 2 represents the A(At)  curves for 
s=10-14.  We get At=0 .665+0 .02  and (A')2=0.1216___0.001, but these 
values show a dependence on the v variations. For the second method 
(Fig. 3), we do not have a definite region, although for the known v we 
should expect a zl~ between 0.6 and 0.7. 

3.2. The Per imeter - to-Si te  Ratio and Vertex Degree per Site 

The perimeter-to-site ratio calculation differs for the site and bond 
problems. While for the site problem we used the simulation data, in the 
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Fig. 2. Curves of [A'(~Jt)] 2 for input v=0.6408 for the bond problem. 

bond problem we used the perimeter polynomials for the site problem ~6~ 
to extract the corresponding perimeter polynomials for trees by the dual 
lattice (we reached b = 9 for this previously nonexistent series)) 4J 

Figure 4 shows the values of the site and bond, and also the results 
obtained by Duarte 13~ for the perimeter-to-site ratio in the site problem. 
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Fig. 3. Plot of Pad6 approxlmants to A~ + 1 as a function of v. 
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Plot of K= ( t /s)  versus l/s for site ( + ) and bond ( x ) from exact results (dashed 
line) and Monte  Carlo studies (solid line). 

The extrapolation to s--.  ~ is K(s i te)=  1.303 +0.003 and Neville tables 
compounded with fittings leads to a limiting ratio estimate of K ( b o n d ) =  
1.68 __+ 0.02. 

The vertex degree per site results are listed in Table II. The results of 
the bond problem are in agreement to those presented by Seitz and 
Klein I~s~ and van Rensburg and Madras. I~~ For the site problem, they 
have been calculated for the first time. 

4. D ISCUSSION AND CONCLUSION 

The Rg computed for every size with this constant number of itera- 
tions has proved to be insufficient for large trees. This constant number 
divided by the size of a tree can define the mobility degree of a site. In this 

Table II. Mean  Fraction of Vert ices of Degree i" 

~1 ~2 G G 

Bonds 0.2644(2)  0 .4965(3)  0.2177( I ) 0.02531 (6) 
Sites 0.2005(2) 0 .6097(4)  0.1790( l ) 0.01071 (5) 

a Error bars are standard deviations. 



91 6 Gon~:alves 

context, we say that for a size of 50 sites, each one has a new position for 
20 times on average, in contrast to the largest tree used (s = 1900), where 
only half of the tree gets moved around. So, for larger trees each site should 
have at most one move on average. 

The leading exponent of 0.637(10) for site and bond problem 
estimated in this paper reinforces the value of 0.640 from the best estimates 
of Derrida and DeSeze ~ and Kert6sz I'll and the successive Monte Carlo 
studies}tS'3'~~ 

In our Monte Carlo results, the amplitude A' for the bond problem 
stays between the results obtained by lshinabe, tg~ (A') 2 =0.1156, and van 
Rensburg and Madras, I~~ (A')2=0.1248, which they calculated with the 
correction-to-scaling exponent A~= 0.635 from Ishinabe. However, we can 
reliably say that we can expect A' to be a value between the Monte Carlo 
results and the reanalyzed Privman-Fisher estimators from Ishninabe's R~ 
series, which show a slightly higher value, since the v used here is lower 
than 0.644, of A '=0 .355+0.010 .  For the site problem and to our 
knowledge, A' =0.469+0.013 is new. 

The A~ in our analyses, not only in the Privman-Fisher estimators 
with v = 0.6408, as well as in the Adler unbiased estimators, are in agree- 
ment with the value obtained by exact series analyses from Ishinabe tg~ of 
0.635, against the commonly accepted value A~ =0 .87+0 .06  for lattice 
animals given by Guttmann. t7~ Note in Fig. 3 that v ~ 0.64 shows no clear 
confluence (dl would be, as quoted, 0.6-0.7). Much better convergence 
occurs in the v = 1.1-1.3 range at A , =  0.6. 

Finally, if we allow for the need of a permanent perimeter information, 
the calculation of K leads to a permanent data structure similar to the 
biased algorithm of Duarte ~3~ and the estimation of this property in his 
work as well as in this one does not show any evidence of systematic bias 
influencing the perimeter-to-site ratio results or v. Clearly, for these two 
properties, his Markov evolution, much smaller than either of van 
Rensburg and Madras t~~ or-ours (around 10 times larger), does not create 
a noticeable drift effect on either. Notice, on the other hand, that there 
is outstanding agreement between our vertex degree partitions and those of 
Seitz and Klein t'5~ and van Rensburg and Madras. tl~ This is encouraging, 
particularly in the light of three-dimensional studies that we are currently 
undertaking, with a much enlarged Set of topological variables. 

A C K N O W L E D G M E N T S  

This research was partially supported by CIUP- INIC,  Portugal. 
We are indebted to J. Adler for friendly communication of her 

confluent analyses algorithm. 



2D Lattice Trees 917 

R E F E R E N C E S  

1. Adler, J., Moshe, M., and Privman, V., Phys. Rev. B 26:1411 (1982); J. Adler, I. Chang, 
and S. Shapira, Int. J. Mod. Phys. C 4 (1993). 

2. B. Derrida and L. DeSeze, J. Phys. (Paris) 43:475 (1982). 
3. J. A. M. S. Duarte, J. Phys. A: Math. Gen. 19:1979 (1986). 
4. J. A. M. S. Duarte, Portugal. Phys. 12:99 (1981). 
5. J. A. M. S. and A. M. R. Cadilhe, J. Star. Phys. 56:951 (1989). 
6. J. A. M. S. Duarte and H. J. Ruskin, J. Phys. (Paris) 42:1585 (1981). 
7. A. J. Guttmann, J. Phys. A: Math. Gen. 11:949 (1982). 
8. A. J. Guttmann and D. S. Gaunt, J. Phys. A: Math. Gen. 11:949 (1978). 
9. T. Ishinabe, J. Phys. A: Math. Gen. 22:4419 (1989). 

10. E. J. Janse van Rensburg and N. Madras, J. Phys. A: Math. Gen. 25:303 (1992). 
II. J. Kert~sz, J. Phys. A: Math. Gen. 19:599 (1986). 
12. T. Lubensky and J. lsaacson, Phys. Rev. A 20:2130 (1979). 
13. A. Margolina, H. Nakanishi, D. Stauffer, and H. E. Stanley, J. Phys. A: Math. Gen. 

17:1683 (1984). 
14. V. Privman and M. E. Fisher, J. Phys. A: Math. Gen. 16:L295 (1983). 
15. W. A. Seitz and D. J. Klein, J. Chem. Phys. 75:5190 (1981). 
16. M. F. Sykes, D. S. Gaunt, and M. Glen, J. Phys. A: Math. Gen. 14:287 (1981). 

Communicated by D. Stauffer 


